""" Flask application exposing a minimal search API backed by Elasticsearch. Routes: GET / -> Static HTML search page. GET /api/channels -> List available channels (via terms aggregation). GET /api/search -> Search index with pagination and simple highlighting. GET /api/transcript -> Return full transcript for a given video_id. """ from __future__ import annotations import copy import json import logging import re from pathlib import Path from typing import Any, Dict, Iterable, List, Optional, Sequence, Set from collections import Counter from datetime import datetime from flask import Flask, jsonify, request, send_from_directory from .config import CONFIG, AppConfig try: from elasticsearch import Elasticsearch # type: ignore from elasticsearch import BadRequestError # type: ignore except ImportError: # pragma: no cover - dependency optional Elasticsearch = None BadRequestError = Exception # type: ignore LOGGER = logging.getLogger(__name__) def _ensure_client(config: AppConfig) -> "Elasticsearch": if Elasticsearch is None: raise RuntimeError( "elasticsearch package not installed. " "Install elasticsearch>=7 to run the Flask search app." ) kwargs = {} if config.elastic.api_key: kwargs["api_key"] = config.elastic.api_key elif config.elastic.username and config.elastic.password: kwargs["basic_auth"] = ( config.elastic.username, config.elastic.password, ) if config.elastic.ca_cert: kwargs["ca_certs"] = str(config.elastic.ca_cert) kwargs["verify_certs"] = config.elastic.verify_certs return Elasticsearch(config.elastic.url, **kwargs) def metrics_payload(data_root: Path) -> Dict[str, Any]: total_items = 0 channel_counter: Counter = Counter() channel_name_map: Dict[str, str] = {} year_counter: Counter = Counter() month_counter: Counter = Counter() if not data_root.exists(): LOGGER.warning("Data directory %s not found; metrics will be empty.", data_root) return { "totalItems": 0, "totalChannels": 0, "itemsPerChannel": [], "yearHistogram": [], "recentMonths": [], } for path in data_root.rglob("*.json"): try: with path.open("r", encoding="utf-8") as handle: doc = json.load(handle) except Exception: continue total_items += 1 channel_id = doc.get("channel_id") channel_name = doc.get("channel_name") or channel_id if channel_id: channel_counter[channel_id] += 1 if channel_name and channel_id not in channel_name_map: channel_name_map[channel_id] = channel_name date_value = doc.get("date") or doc.get("published_at") dt: Optional[datetime] = None if isinstance(date_value, str): for fmt in ("%Y-%m-%d", "%Y-%m-%dT%H:%M:%S", "%Y-%m-%dT%H:%M:%SZ"): try: dt = datetime.strptime(date_value[: len(fmt)], fmt) break except Exception: continue elif isinstance(date_value, (int, float)): try: dt = datetime.fromtimestamp(date_value) except Exception: dt = None if dt: year_counter[str(dt.year)] += 1 month_counter[dt.strftime("%Y-%m")] += 1 items_per_channel = [ { "label": channel_name_map.get(cid, cid), "count": count, } for cid, count in channel_counter.most_common() ] year_histogram = [ {"bucket": year, "count": year_counter[year]} for year in sorted(year_counter.keys()) ] recent_months = sorted(month_counter.keys()) recent_months = recent_months[-12:] recent_months_payload = [ {"bucket": month, "count": month_counter[month]} for month in recent_months ] return { "totalItems": total_items, "totalChannels": len(channel_counter), "itemsPerChannel": items_per_channel, "yearHistogram": year_histogram, "recentMonths": recent_months_payload, } def elastic_metrics_payload( client: "Elasticsearch", index: str, *, channel_field_candidates: Optional[List[str]] = None, debug: bool = False, ) -> Dict[str, Any]: if channel_field_candidates is None: channel_field_candidates = ["channel_id.keyword", "channel_id"] base_body: Dict[str, Any] = { "size": 0, "track_total_hits": True, "aggs": { "channels": { "terms": { "field": "channel_id.keyword", "size": 500, "order": {"_count": "desc"}, }, "aggs": { "name": { "top_hits": { "size": 1, "_source": {"includes": ["channel_name"]}, } } }, }, "year_histogram": { "date_histogram": { "field": "date", "calendar_interval": "year", "format": "yyyy", } }, "month_histogram": { "date_histogram": { "field": "date", "calendar_interval": "month", "format": "yyyy-MM", "order": {"_key": "asc"}, } }, }, } last_error: Optional[Exception] = None response: Optional[Dict[str, Any]] = None for candidate_field in channel_field_candidates: body = json.loads(json.dumps(base_body)) body["aggs"]["channels"]["terms"]["field"] = candidate_field try: if debug: LOGGER.info( "Elasticsearch metrics request: %s", json.dumps({"index": index, "body": body}, indent=2), ) response = client.search(index=index, body=body) break except BadRequestError as exc: last_error = exc if debug: LOGGER.warning( "Metrics aggregation failed for field %s: %s", candidate_field, exc, ) if response is None: raise last_error or RuntimeError("Unable to compute metrics from Elasticsearch.") hits = response.get("hits", {}) total_items = hits.get("total", {}).get("value", 0) if debug: LOGGER.info( "Elasticsearch metrics response: %s", json.dumps(response, indent=2, default=str), ) aggregations = response.get("aggregations", {}) channel_buckets = aggregations.get("channels", {}).get("buckets", []) items_per_channel = [] for bucket in channel_buckets: key = bucket.get("key") channel_name = key top_hits = ( bucket.get("name", {}) .get("hits", {}) .get("hits", []) ) if top_hits: channel_name = ( top_hits[0] .get("_source", {}) .get("channel_name", channel_name) ) items_per_channel.append( {"label": channel_name or key, "count": bucket.get("doc_count", 0)} ) year_buckets = aggregations.get("year_histogram", {}).get("buckets", []) year_histogram = [ { "bucket": bucket.get("key_as_string") or str(bucket.get("key")), "count": bucket.get("doc_count", 0), } for bucket in year_buckets ] month_buckets = aggregations.get("month_histogram", {}).get("buckets", []) recent_months_entries = [ { "bucket": bucket.get("key_as_string") or str(bucket.get("key")), "count": bucket.get("doc_count", 0), "_key": bucket.get("key"), } for bucket in month_buckets ] recent_months_entries.sort(key=lambda item: item.get("_key", 0)) recent_months_payload = [ {"bucket": entry["bucket"], "count": entry["count"]} for entry in recent_months_entries[-12:] ] return { "totalItems": total_items, "totalChannels": len(items_per_channel), "itemsPerChannel": items_per_channel, "yearHistogram": year_histogram, "recentMonths": recent_months_payload, } def parse_channel_params(values: Iterable[Optional[str]]) -> List[str]: seen: Set[str] = set() channels: List[str] = [] for value in values: if not value: continue for part in str(value).split(","): cleaned = part.strip() if not cleaned or cleaned.lower() == "all": continue if cleaned not in seen: seen.add(cleaned) channels.append(cleaned) return channels def build_year_filter(year: Optional[str]) -> Optional[Dict]: if not year: return None try: year_int = int(year) return { "range": { "date": { "gte": f"{year_int}-01-01", "lt": f"{year_int + 1}-01-01", "format": "yyyy-MM-dd" } } } except (ValueError, TypeError): return None def build_channel_filter(channels: Optional[Sequence[str]]) -> Optional[Dict]: if not channels: return None per_channel_clauses: List[Dict[str, Any]] = [] for value in channels: if not value: continue per_channel_clauses.append( { "bool": { "should": [ {"term": {"channel_id.keyword": value}}, {"term": {"channel_id": value}}, ], "minimum_should_match": 1, } } ) if not per_channel_clauses: return None if len(per_channel_clauses) == 1: return per_channel_clauses[0] return { "bool": { "should": per_channel_clauses, "minimum_should_match": 1, } } def build_query_payload( query: str, *, channels: Optional[Sequence[str]] = None, year: Optional[str] = None, sort: str = "relevant", use_exact: bool = True, use_fuzzy: bool = True, use_phrase: bool = True, use_query_string: bool = False, ) -> Dict: filters: List[Dict] = [] should: List[Dict] = [] channel_filter = build_channel_filter(channels) if channel_filter: filters.append(channel_filter) year_filter = build_year_filter(year) if year_filter: filters.append(year_filter) if use_query_string: base_fields = ["title^3", "description^2", "transcript_full", "transcript_secondary_full"] qs_query = (query or "").strip() or "*" query_body: Dict[str, Any] = { "query_string": { "query": qs_query, "default_operator": "AND", "fields": base_fields, } } if filters: query_body = {"bool": {"must": query_body, "filter": filters}} body: Dict = { "query": query_body, "highlight": { "fields": { "transcript_full": { "fragment_size": 160, "number_of_fragments": 5, "fragmenter": "span", }, "transcript_secondary_full": { "fragment_size": 160, "number_of_fragments": 5, "fragmenter": "span", }, "title": {"number_of_fragments": 0}, "description": { "fragment_size": 160, "number_of_fragments": 1, }, }, "require_field_match": False, "pre_tags": [""], "post_tags": [""], "encoder": "html", "max_analyzed_offset": 900000, }, } if sort == "newer": body["sort"] = [{"date": {"order": "desc"}}] elif sort == "older": body["sort"] = [{"date": {"order": "asc"}}] elif sort == "referenced": body["sort"] = [{"referenced_by_count": {"order": "desc"}}] return body if query: base_fields = ["title^3", "description^2", "transcript_full", "transcript_secondary_full"] if use_phrase: should.append( { "match_phrase": { "transcript_full": { "query": query, "slop": 2, "boost": 10.0, } } } ) should.append( { "match_phrase": { "transcript_secondary_full": { "query": query, "slop": 2, "boost": 10.0, } } } ) if use_fuzzy: should.append( { "multi_match": { "query": query, "fields": base_fields, "type": "best_fields", "operator": "and", "fuzziness": "AUTO", "prefix_length": 1, "max_expansions": 50, "boost": 1.5, } } ) if use_exact: should.append( { "multi_match": { "query": query, "fields": base_fields, "type": "best_fields", "operator": "and", "boost": 3.0, } } ) if should: query_body: Dict = { "bool": { "should": should, "minimum_should_match": 1, } } if filters: query_body["bool"]["filter"] = filters elif filters: query_body = {"bool": {"filter": filters}} else: query_body = {"match_all": {}} body: Dict = { "query": query_body, "highlight": { "fields": { "transcript_full": { "fragment_size": 160, "number_of_fragments": 5, "fragmenter": "span", }, "transcript_secondary_full": { "fragment_size": 160, "number_of_fragments": 5, "fragmenter": "span", }, "title": {"number_of_fragments": 0}, "description": { "fragment_size": 160, "number_of_fragments": 1, }, }, "require_field_match": False, "pre_tags": [""], "post_tags": [""], "encoder": "html", "max_analyzed_offset": 900000, }, } if query_body.get("match_all") is None: body["highlight"]["highlight_query"] = copy.deepcopy(query_body) if sort == "newer": body["sort"] = [{"date": {"order": "desc"}}] elif sort == "older": body["sort"] = [{"date": {"order": "asc"}}] elif sort == "referenced": body["sort"] = [{"referenced_by_count": {"order": "desc"}}] return body def create_app(config: AppConfig = CONFIG) -> Flask: app = Flask(__name__, static_folder=str(Path(__file__).parent / "static")) client = _ensure_client(config) index = config.elastic.index @app.route("/") def index_page(): return send_from_directory(app.static_folder, "index.html") @app.route("/static/") def static_files(filename: str): return send_from_directory(app.static_folder, filename) @app.route("/api/channels") def channels(): base_channels_body = { "size": 0, "aggs": { "channels": { "terms": {"field": "channel_id", "size": 200}, "aggs": { "name": { "top_hits": { "size": 1, "_source": {"includes": ["channel_name"]}, } } }, } }, } def run_channels_request(field_name: str): body = json.loads(json.dumps(base_channels_body)) # deep copy body["aggs"]["channels"]["terms"]["field"] = field_name if config.elastic.debug: LOGGER.info( "Elasticsearch channels request: %s", json.dumps({"index": index, "body": body}, indent=2), ) return client.search(index=index, body=body) response = None last_error = None for candidate_field in ("channel_id.keyword", "channel_id"): try: response = run_channels_request(candidate_field) if config.elastic.debug: LOGGER.info("Channels aggregation used field: %s", candidate_field) break except BadRequestError as exc: last_error = exc if config.elastic.debug: LOGGER.warning( "Channels aggregation failed for field %s: %s", candidate_field, exc, ) if response is None: raise last_error or RuntimeError("Unable to aggregate channels.") if config.elastic.debug: LOGGER.info( "Elasticsearch channels response: %s", json.dumps(response, indent=2, default=str), ) buckets = ( response.get("aggregations", {}) .get("channels", {}) .get("buckets", []) ) data = [ { "Id": bucket.get("key"), "Name": ( bucket.get("name", {}) .get("hits", {}) .get("hits", [{}])[0] .get("_source", {}) .get("channel_name", bucket.get("key")) ), "Count": bucket.get("doc_count", 0), } for bucket in buckets ] data.sort(key=lambda item: item["Name"].lower()) return jsonify(data) @app.route("/api/years") def years(): body = { "size": 0, "aggs": { "years": { "date_histogram": { "field": "date", "calendar_interval": "year", "format": "yyyy", "order": {"_key": "desc"} } } } } if config.elastic.debug: LOGGER.info( "Elasticsearch years request: %s", json.dumps({"index": index, "body": body}, indent=2), ) response = client.search(index=index, body=body) if config.elastic.debug: LOGGER.info( "Elasticsearch years response: %s", json.dumps(response, indent=2, default=str), ) buckets = ( response.get("aggregations", {}) .get("years", {}) .get("buckets", []) ) data = [ { "Year": bucket.get("key_as_string"), "Count": bucket.get("doc_count", 0), } for bucket in buckets if bucket.get("doc_count", 0) > 0 ] return jsonify(data) @app.route("/api/search") def search(): query = request.args.get("q", "", type=str) raw_channels: List[Optional[str]] = request.args.getlist("channel_id") legacy_channel = request.args.get("channel", type=str) if legacy_channel: raw_channels.append(legacy_channel) channels = parse_channel_params(raw_channels) year = request.args.get("year", "", type=str) or None sort = request.args.get("sort", "relevant", type=str) page = max(request.args.get("page", 0, type=int), 0) size = max(request.args.get("size", 10, type=int), 1) def parse_flag(name: str, default: bool = True) -> bool: value = request.args.get(name) if value is None: return default return value.lower() not in {"0", "false", "no"} use_exact = parse_flag("exact", True) use_fuzzy = parse_flag("fuzzy", True) use_phrase = parse_flag("phrase", True) use_query_string = parse_flag("query_string", False) if use_query_string: use_exact = use_fuzzy = use_phrase = False payload = build_query_payload( query, channels=channels, year=year, sort=sort, use_exact=use_exact, use_fuzzy=use_fuzzy, use_phrase=use_phrase, use_query_string=use_query_string, ) start = page * size if config.elastic.debug: LOGGER.info( "Elasticsearch search request: %s", json.dumps( { "index": index, "from": start, "size": size, "body": payload, "channels": channels, "toggles": { "exact": use_exact, "fuzzy": use_fuzzy, "phrase": use_phrase, }, }, indent=2, ), ) response = client.search( index=index, from_=start, size=size, body=payload, ) if config.elastic.debug: LOGGER.info( "Elasticsearch search response: %s", json.dumps(response, indent=2, default=str), ) hits = response.get("hits", {}) total = hits.get("total", {}).get("value", 0) documents = [] for hit in hits.get("hits", []): source = hit.get("_source", {}) highlight_map = hit.get("highlight", {}) transcript_highlight = ( (highlight_map.get("transcript_full", []) or []) + (highlight_map.get("transcript_secondary_full", []) or []) ) title_html = ( highlight_map.get("title") or [source.get("title") or "Untitled"] )[0] description_html = ( highlight_map.get("description") or [source.get("description") or ""] )[0] documents.append( { "video_id": source.get("video_id"), "channel_id": source.get("channel_id"), "channel_name": source.get("channel_name"), "title": source.get("title"), "titleHtml": title_html, "description": source.get("description"), "descriptionHtml": description_html, "date": source.get("date"), "url": source.get("url"), "toHighlight": transcript_highlight, "highlightSource": { "primary": bool(highlight_map.get("transcript_full")), "secondary": bool(highlight_map.get("transcript_secondary_full")), }, "internal_references_count": source.get("internal_references_count", 0), "referenced_by_count": source.get("referenced_by_count", 0), } ) return jsonify( { "items": documents, "totalResults": total, "totalPages": (total + size - 1) // size, "currentPage": page, } ) @app.route("/api/metrics") def metrics(): try: data = elastic_metrics_payload( client, index, channel_field_candidates=["channel_id.keyword", "channel_id"], debug=config.elastic.debug, ) except Exception: LOGGER.exception( "Falling back to local metrics payload due to Elasticsearch error.", exc_info=True, ) data = metrics_payload(config.data.root) return jsonify(data) @app.route("/api/frequency") def frequency(): raw_term = request.args.get("term", type=str) or "" use_query_string = request.args.get("query_string", default="0", type=str) use_query_string = (use_query_string or "").lower() in {"1", "true", "yes"} term = raw_term.strip() if not term and not use_query_string: return ("term parameter is required", 400) if use_query_string and not term: term = "*" raw_channels: List[Optional[str]] = request.args.getlist("channel_id") legacy_channel = request.args.get("channel", type=str) if legacy_channel: raw_channels.append(legacy_channel) channels = parse_channel_params(raw_channels) year = request.args.get("year", "", type=str) or None interval = (request.args.get("interval", "month") or "month").lower() allowed_intervals = {"day", "week", "month", "quarter", "year"} if interval not in allowed_intervals: interval = "month" start = request.args.get("start", type=str) end = request.args.get("end", type=str) filters: List[Dict] = [] channel_filter = build_channel_filter(channels) if channel_filter: filters.append(channel_filter) year_filter = build_year_filter(year) if year_filter: filters.append(year_filter) if start or end: range_filter: Dict[str, Dict[str, Dict[str, str]]] = {"range": {"date": {}}} if start: range_filter["range"]["date"]["gte"] = start if end: range_filter["range"]["date"]["lte"] = end filters.append(range_filter) base_fields = ["title^3", "description^2", "transcript_full", "transcript_secondary_full"] if use_query_string: qs_query = term or "*" must_clause: List[Dict[str, Any]] = [ { "query_string": { "query": qs_query, "default_operator": "AND", "fields": base_fields, } } ] else: must_clause = [ { "multi_match": { "query": term, "fields": base_fields, "type": "best_fields", "operator": "and", } } ] query: Dict[str, Any] = {"bool": {"must": must_clause}} if filters: query["bool"]["filter"] = filters histogram: Dict[str, Any] = { "field": "date", "calendar_interval": interval, "min_doc_count": 0, } if start or end: bounds: Dict[str, str] = {} if start: bounds["min"] = start if end: bounds["max"] = end if bounds: histogram["extended_bounds"] = bounds channel_terms_size = max(6, len(channels)) if channels else 6 body = { "size": 0, "query": query, "aggs": { "over_time": { "date_histogram": histogram, "aggs": { "by_channel": { "terms": { "field": "channel_id.keyword", "size": channel_terms_size, "order": {"_count": "desc"}, } } }, } }, } if config.elastic.debug: LOGGER.info( "Elasticsearch frequency request: %s", json.dumps( { "index": index, "body": body, "term": term, "interval": interval, "channels": channels, "start": start, "end": end, "query_string": use_query_string, }, indent=2, ), ) response = client.search(index=index, body=body) if config.elastic.debug: LOGGER.info( "Elasticsearch frequency response: %s", json.dumps(response, indent=2, default=str), ) raw_buckets = ( response.get("aggregations", {}) .get("over_time", {}) .get("buckets", []) ) channel_totals: Dict[str, int] = {} buckets: List[Dict[str, Any]] = [] for bucket in raw_buckets: date_str = bucket.get("key_as_string") total = bucket.get("doc_count", 0) channel_entries: List[Dict[str, Any]] = [] for ch_bucket in bucket.get("by_channel", {}).get("buckets", []): cid = ch_bucket.get("key") count = ch_bucket.get("doc_count", 0) if cid: channel_entries.append({"id": cid, "count": count}) channel_totals[cid] = channel_totals.get(cid, 0) + count buckets.append( {"date": date_str, "total": total, "channels": channel_entries} ) ranked_channels = sorted( [{"id": cid, "total": total} for cid, total in channel_totals.items()], key=lambda item: item["total"], reverse=True, ) payload = { "term": raw_term if not use_query_string else term, "interval": interval, "buckets": buckets, "channels": ranked_channels, "totalResults": response.get("hits", {}) .get("total", {}) .get("value", 0), } return jsonify(payload) @app.route("/frequency") def frequency_page(): return send_from_directory(app.static_folder, "frequency.html") @app.route("/api/transcript") def transcript(): video_id = request.args.get("video_id", type=str) if not video_id: return ("video_id not set", 400) response = client.get(index=index, id=video_id, ignore=[404]) if config.elastic.debug: LOGGER.info( "Elasticsearch transcript request: index=%s id=%s", index, video_id ) LOGGER.info( "Elasticsearch transcript response: %s", json.dumps(response, indent=2, default=str) if response else "None", ) if not response or not response.get("found"): return ("not found", 404) source = response["_source"] return jsonify( { "video_id": source.get("video_id"), "title": source.get("title"), "transcript_parts": source.get("transcript_parts", []), "transcript_full": source.get("transcript_full"), "transcript_secondary_parts": source.get("transcript_secondary_parts", []), "transcript_secondary_full": source.get("transcript_secondary_full"), } ) return app def main() -> None: # pragma: no cover logging.basicConfig(level=logging.INFO, format="%(levelname)s %(message)s") app = create_app() app.run(host="0.0.0.0", port=8080, debug=True) if __name__ == "__main__": # pragma: no cover main()