From 014c4c043d9ee8809094f499ab4bad4d24b453d1 Mon Sep 17 00:00:00 2001 From: Luccas Mateus Date: Tue, 2 May 2023 12:53:10 -0300 Subject: [PATCH] [alan-turing][m] - small tweaks (#830) --- examples/alan-turing-portal/README.md | 18 ++++++++++---- .../alan-turing-portal/components/Footer.jsx | 2 +- examples/alan-turing-portal/content/about.md | 5 ++++ .../content/contributing.md | 22 ------------------ .../content/datasets/abusive-eval-v1-0.md | 14 +++++++++++ ...aware-croatian-abusive-language-dataset.md | 14 +++++++++++ ...ech-detection-with-cross-domain-tranfer.md | 14 +++++++++++ .../content/datasets/measuring-hate-speech.md | 14 +++++++++++ ...ge-and-hate-speech-detection-for-danish.md | 14 +++++++++++ examples/alan-turing-portal/content/index.md | 21 +++++++++++++++++ examples/alan-turing-portal/markdown.db | Bin 40960 -> 45056 bytes .../alan-turing-portal/pages/[...slug].jsx | 4 ++++ examples/alan-turing-portal/pages/index.jsx | 18 +------------- .../alan-turing-portal/styles/tailwind.css | 9 +++++-- 14 files changed, 122 insertions(+), 47 deletions(-) create mode 100644 examples/alan-turing-portal/content/about.md delete mode 100644 examples/alan-turing-portal/content/contributing.md create mode 100644 examples/alan-turing-portal/content/datasets/abusive-eval-v1-0.md create mode 100644 examples/alan-turing-portal/content/datasets/coral-a-context-aware-croatian-abusive-language-dataset.md create mode 100644 examples/alan-turing-portal/content/datasets/large-scale-hate-speech-detection-with-cross-domain-tranfer.md create mode 100644 examples/alan-turing-portal/content/datasets/measuring-hate-speech.md create mode 100644 examples/alan-turing-portal/content/datasets/offensive-language-and-hate-speech-detection-for-danish.md diff --git a/examples/alan-turing-portal/README.md b/examples/alan-turing-portal/README.md index b519da6f..67553a92 100644 --- a/examples/alan-turing-portal/README.md +++ b/examples/alan-turing-portal/README.md @@ -1,6 +1,18 @@ +## Intro + +This page catalogues datasets annotated for hate speech, online abuse, and offensive language. They may be useful for e.g. training a natural language processing system to detect this language. + +Its built on top of [PortalJS](https://portaljs.org/), it allows you to publish datasets, lists of offensive keywords and static pages, all of those are stored as markdown files inside the `content` folder. + +- .md files inside `content/datasets/` will appear on the dataset list section of the homepage and be searchable as well as having a individual page in `datasets/` +- .md files inside `content/keywords/` will appear on the list of offensive keywords section of the homepage as well as having a individual page in `keywords/` +- .md files inside `content/` will be converted to static pages in the url `/` eg: `content/about.md` becomes `/about` + +This is also a Next.JS project so you can use the following steps to run the website locally. + ## Getting started -To get started with this template, first install the npm dependencies: +To get started first install the npm dependencies: ```bash npm install @@ -13,7 +25,3 @@ npm run dev ``` Finally, open [http://localhost:3000](http://localhost:3000) in your browser to view the website. - -## License - -This site template is a commercial product and is licensed under the [Tailwind UI license](https://tailwindui.com/license). diff --git a/examples/alan-turing-portal/components/Footer.jsx b/examples/alan-turing-portal/components/Footer.jsx index b77320b8..3bdf2e58 100644 --- a/examples/alan-turing-portal/components/Footer.jsx +++ b/examples/alan-turing-portal/components/Footer.jsx @@ -21,7 +21,7 @@ export function Footer() {

- hatespeechdata maintained by leondz + Built with PortalJS 🌀

© {new Date().getFullYear()} Leon Derczynski. All rights diff --git a/examples/alan-turing-portal/content/about.md b/examples/alan-turing-portal/content/about.md new file mode 100644 index 00000000..5077bc9c --- /dev/null +++ b/examples/alan-turing-portal/content/about.md @@ -0,0 +1,5 @@ +--- +title: About +--- + +This is an about page, left here as an example diff --git a/examples/alan-turing-portal/content/contributing.md b/examples/alan-turing-portal/content/contributing.md deleted file mode 100644 index 1a9ed96d..00000000 --- a/examples/alan-turing-portal/content/contributing.md +++ /dev/null @@ -1,22 +0,0 @@ ---- -title: Contributing ---- - -We accept entries to our catalogue based on pull requests to the content folder. The dataset must be avaliable for download to be included in the list. If you want to add an entry, follow these steps! - -Please send just one dataset addition/edit at a time - edit it in, then save. This will make everyone’s life easier (including yours!) - -- Go to the repo url file and click the "Add file" dropdown and then click on "Create new file". -![](https://i.imgur.com/2PR0ZgL.png) - -- In the following page type `content/datasets/.md`. if you want to add an entry to the datasets catalog or `content/keywords/.md` if you want to add an entry to the lists of abusive keywords. -![](https://i.imgur.com/rr3uSYu.png) - -- Copy the contents of `templates/dataset.md` or `templates/keywords.md` respectively to the camp below, filling out the fields with the correct data format -![](https://i.imgur.com/x6JIjhz.png) - -- Click on "Commit changes", on the popup make sure you give some brief detail on the proposed change. and then click on Propose changes -![](https://i.imgur.com/BxuxKEJ.png) - -- Submit the pull request on the next page when prompted. - diff --git a/examples/alan-turing-portal/content/datasets/abusive-eval-v1-0.md b/examples/alan-turing-portal/content/datasets/abusive-eval-v1-0.md new file mode 100644 index 00000000..3abbe396 --- /dev/null +++ b/examples/alan-turing-portal/content/datasets/abusive-eval-v1-0.md @@ -0,0 +1,14 @@ +--- +title: AbuseEval v1.0 +link-to-publication: http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.760.pdf +link-to-data: https://github.com/tommasoc80/AbuseEval +task-description: Explicitness annotation of offensive and abusive content +details-of-task: "Enriched versions of the OffensEval/OLID dataset with the distinction of explicit/implicit offensive messages and the new dimension for abusive messages. Labels for offensive language: EXPLICIT, IMPLICT, NOT; Labels for abusive language: EXPLICIT, IMPLICT, NOTABU" +size-of-dataset: 14100 +percentage-abusive: 20.75 +language: English +level-of-annotation: ["Tweets"] +platform: ["Twitter"] +medium: ["Text"] +reference: "Caselli, T., Basile, V., Jelena, M., Inga, K., and Michael, G. 2020. \"I feel offended, don’t be abusive! implicit/explicit messages in offensive and abusive language\". The 12th Language Resources and Evaluation Conference (pp. 6193-6202). European Language Resources Association." +--- diff --git a/examples/alan-turing-portal/content/datasets/coral-a-context-aware-croatian-abusive-language-dataset.md b/examples/alan-turing-portal/content/datasets/coral-a-context-aware-croatian-abusive-language-dataset.md new file mode 100644 index 00000000..7e2607a5 --- /dev/null +++ b/examples/alan-turing-portal/content/datasets/coral-a-context-aware-croatian-abusive-language-dataset.md @@ -0,0 +1,14 @@ +--- +title: "CoRAL: a Context-aware Croatian Abusive Language Dataset" +link-to-publication: https://aclanthology.org/2022.findings-aacl.21/ +link-to-data: https://github.com/shekharRavi/CoRAL-dataset-Findings-of-the-ACL-AACL-IJCNLP-2022 +task-description: Multi-class based on context dependency categories (CDC) +details-of-task: Detectioning CDC from abusive comments +size-of-dataset: 2240 +percentage-abusive: 100 +language: "Croatian" +level-of-annotation: ["Posts"] +platform: ["Posts"] +medium: ["Newspaper Comments"] +reference: "Ravi Shekhar, Mladen Karan and Matthew Purver (2022). CoRAL: a Context-aware Croatian Abusive Language Dataset. Findings of the ACL: AACL-IJCNLP." +--- diff --git a/examples/alan-turing-portal/content/datasets/large-scale-hate-speech-detection-with-cross-domain-tranfer.md b/examples/alan-turing-portal/content/datasets/large-scale-hate-speech-detection-with-cross-domain-tranfer.md new file mode 100644 index 00000000..50e212eb --- /dev/null +++ b/examples/alan-turing-portal/content/datasets/large-scale-hate-speech-detection-with-cross-domain-tranfer.md @@ -0,0 +1,14 @@ +--- +title: Large-Scale Hate Speech Detection with Cross-Domain Transfer +link-to-publication: https://aclanthology.org/2022.lrec-1.238/ +link-to-data: https://github.com/avaapm/hatespeech +task-description: Three-class (Hate speech, Offensive language, None) +details-of-task: Hate speech detection on social media (Twitter) including 5 target groups (gender, race, religion, politics, sports) +size-of-dataset: "100k English (27593 hate, 30747 offensive, 41660 none)" +percentage-abusive: 58.3 +language: English +level-of-annotation: ["Posts"] +platform: ["Twitter"] +medium: ["Text", "Image"] +reference: "Cagri Toraman, Furkan Åžahinuç, Eyup Yilmaz. 2022. Large-Scale Hate Speech Detection with Cross-Domain Transfer. In Proceedings of the Thirteenth Language Resources and Evaluation Conference, pages 2215–2225, Marseille, France. European Language Resources Association." +--- diff --git a/examples/alan-turing-portal/content/datasets/measuring-hate-speech.md b/examples/alan-turing-portal/content/datasets/measuring-hate-speech.md new file mode 100644 index 00000000..4cb7e548 --- /dev/null +++ b/examples/alan-turing-portal/content/datasets/measuring-hate-speech.md @@ -0,0 +1,14 @@ +--- +title: Measuring Hate Speech +link-to-publication: https://arxiv.org/abs/2009.10277 +link-to-data: https://huggingface.co/datasets/ucberkeley-dlab/measuring-hate-speech +task-description: 10 ordinal labels (sentiment, (dis)respect, insult, humiliation, inferior status, violence, dehumanization, genocide, attack/defense, hate speech), which are debiased and aggregated into a continuous hate speech severity score (hate_speech_score) that includes a region for counterspeech & supportive speeech. Includes 8 target identity groups (race/ethnicity, religion, national origin/citizenship, gender, sexual orientation, age, disability, political ideology) and 42 identity subgroups. +details-of-task: Hate speech measurement on social media in English +size-of-dataset: "39,565 comments annotated by 7,912 annotators on 10 ordinal labels, for 1,355,560 total labels." +percentage-abusive: 25 +language: English +level-of-annotation: ["Social media comment"] +platform: ["Twitter", "Reddit", "Youtube"] +medium: ["Text"] +reference: "Kennedy, C. J., Bacon, G., Sahn, A., & von Vacano, C. (2020). Constructing interval variables via faceted Rasch measurement and multitask deep learning: a hate speech application. arXiv preprint arXiv:2009.10277." +--- diff --git a/examples/alan-turing-portal/content/datasets/offensive-language-and-hate-speech-detection-for-danish.md b/examples/alan-turing-portal/content/datasets/offensive-language-and-hate-speech-detection-for-danish.md new file mode 100644 index 00000000..402df4a6 --- /dev/null +++ b/examples/alan-turing-portal/content/datasets/offensive-language-and-hate-speech-detection-for-danish.md @@ -0,0 +1,14 @@ +--- +title: Offensive Language and Hate Speech Detection for Danish +link-to-publication: http://www.derczynski.com/papers/danish_hsd.pdf +link-to-data: https://figshare.com/articles/Danish_Hate_Speech_Abusive_Language_data/12220805 +task-description: "Branching structure of tasks: Binary (Offensive, Not), Within Offensive (Target, Not), Within Target (Individual, Group, Other)" +details-of-task: Group-directed + Person-directed +size-of-dataset: 3600 +percentage-abusive: 0.12 +language: Danish +level-of-annotation: ["Posts"] +platform: ["Twitter", "Reddit", "Newspaper comments"] +medium: ["Text"] +reference: "Sigurbergsson, G. and Derczynski, L., 2019. Offensive Language and Hate Speech Detection for Danish. ArXiv." +--- diff --git a/examples/alan-turing-portal/content/index.md b/examples/alan-turing-portal/content/index.md index 932248b2..758f1739 100644 --- a/examples/alan-turing-portal/content/index.md +++ b/examples/alan-turing-portal/content/index.md @@ -11,3 +11,24 @@ We provide a list of datasets and keywords. If you would like to contribute to o If you use these resources, please cite (and read!) our paper: Directions in Abusive Language Training Data: Garbage In, Garbage Out. And if you would like to find other resources for researching online hate, visit The Alan Turing Institute’s Online Hate Research Hub or read The Alan Turing Institute’s Reading List on Online Hate and Abuse Research. If you’re looking for a good paper on online hate training datasets (beyond our paper, of course!) then have a look at ‘Resources and benchmark corpora for hate speech detection: a systematic review’ by Poletto et al. in Language Resources and Evaluation. + +## How to contribute + +We accept entries to our catalogue based on pull requests to the content folder. The dataset must be avaliable for download to be included in the list. If you want to add an entry, follow these steps! + +Please send just one dataset addition/edit at a time - edit it in, then save. This will make everyone’s life easier (including yours!) + +- Go to the repo url file and click the "Add file" dropdown and then click on "Create new file". +![](https://i.imgur.com/2PR0ZgL.png) + +- In the following page type `content/datasets/.md`. if you want to add an entry to the datasets catalog or `content/keywords/.md` if you want to add an entry to the lists of abusive keywords, if you want to just add an static page you can leave in the root of `content` it will automatically get assigned an url eg: `/content/about.md` becomes the `/about` page +![](https://i.imgur.com/rr3uSYu.png) + +- Copy the contents of `templates/dataset.md` or `templates/keywords.md` respectively to the camp below, filling out the fields with the correct data format +![](https://i.imgur.com/x6JIjhz.png) + +- Click on "Commit changes", on the popup make sure you give some brief detail on the proposed change. and then click on Propose changes + + +- Submit the pull request on the next page when prompted. + diff --git a/examples/alan-turing-portal/markdown.db b/examples/alan-turing-portal/markdown.db index 280306f1b09d967fcc7341dd68c0ea8e8b927a70..f47a064d6a49d893c0cd513bf53fa8caaf0984e3 100644 GIT binary patch literal 45056 zcmeHQU2NRgbskx^<)4*RwOQz)54o!avJ!SUGvxfsShVs;j%7>!lWcFgE6A7RfdIr{nOmvTe}XO|Ba97Pl`Z_K#D+$ zK#D+$K#D+$K#D+$z!yZ|JK33;g@uKwKdgpacZ6fR`+@v*x$$s)b!VOJtlrpMXHVt1 zr))_c?1jf2@sx$)C}c)U82iKLZI>;*<wGV_HceBl}*K*zQtf~QMQ_iXd&GV@$! z3P)hW(pcSYtgfwRY3DNN01tYp+m}zmi!%#f{p!@m5nS}Ny^uG9{=ubT*!t%QIy5}< zz2v~pygEE+bTd3^8Ufzfbp8PCf-BYR4nfCO| zLVaQCWI$>)bT_Mk2=#A*n-Hiv2*4f70we@#?acR=O;xYybzU=zg}PA_TAf!)^-@KzRV!6X z7u8y+Qqt9$VR$ZPI?U6&1R@ObCPb1E+HOb2Z~iVpCm`-&+7!?!!V z$KJAqPZA#kaoCb)Sw#H@A`iWAops%i`%S!ynU4>yvySis&&@Y|uiMFcVN3YS=o;v8 z+X)oUQs^mt3>bG!hL;pg&$k1?de}0DyUi|d3I@d#c!rIqw}okQCSNYQ7}(DQb=HG@ zaYa>Y)lzm5Pd6}axHFz6Tq@=?z}o8(k4}Ou4unG;aTl-D1N*(j`(6+Ri@WI0;UO8$ z7FXU|+;B;R`n-+z`G(gGySktzG_I~}umkBpXZp$w&$`>ifU;~omt}W^VQ1NG9IauL z&yL+-AD=hzSu1F24rhB5HbNCS#{GBggO$W|fAn4d!j;{VH|I}gGd~E*g_5P!)uO0r zWy>m-jGC%zs#VvyS+1C-Sv1SstXicJsx~~II|^6ig`-g6had~Z@I64m-55h91~0~Y znB-rvlL0?8yoalsD~z)Saa}wN*60nRkH=AY!CW!tFZZRk^H?$gkk&x{ zt_emC6wVDNr>XfwKc|?dX@{+@o-@35K4^)3FwH}LVCUt4V=$DPaeqYJEupM7HkDQS zwQ;*~ck{kN55*(Ku-8`C32g;~3<9P@&X}a&dUJtgP)9(`y2f#zL$F+0YOFP$$59X$ zcsGVtj8<%Yj>0Rn!5IMtGQvEXRw|sqI|W>bXCLGoPYEIR60FnbrvbCv6^B8GgI_V} zy^)<_9YUIIN2q7nmcxMsyTg6%N~y8MLx6qA?sxqI^s+=KFXzzPtI<-9#nZ?zSRu?s^XqnZTRjF4>5SMkd zIju@!1rp;5nJYQpa~1r<3+lF^L{d+YQV*&|`G7wYkj2BC_eFXduwSf%2J97&hsbeN zj)!eWQg};B;iXlF-HrxCwD^3Lb$ED~1EU=ZJ=>fC_#Phva zu`#`i4G%UwUVN$H2=0z&xDD5^4{WS~kMW!lrYdR$VxDmtsgSFwLu?gcOgOv*Q>{9^ zDR{9K+KQ0NvRkBmxPNE|Ehr@D6{z1W-ZYQ1?1@xFYBe`T+`fPwa%{t0VfTH{5Figo z)|iEE+I|qSC!W6_w7ia_rrv_5PiyyFP>;y5$J{l%E;u>M8r;Qt7`zuqCZMGV?Ey(p zbh?p}#(H2A59-=MXd3}GE1g_fQ_2w01xwd!R!s-v8YSyY4iyLByaQD!jAy(4$r^_sJTLdvPTsZ2%K2M@r6P9 z*OFA;8Gx9lE0Ai1e8;r%bP%;wbJa>AhjWSE6MRFf#Dv-kAze9etQGRa=W=YgaSU6m zA9b+cv_n@w8x7V&G?#sjlLXU~I+3DsL-aPfyjypD8+HbhVMb}c)F+9E)d->dz0Hj^ zxuC-Wn;k;aO0jFwoVr+QW7hF#(Hm9XZb!pQ45p2dVyQ=?HRZi7^nqzZ&(R|#&BSAk zo95Ui*M$?vi-XsSMezz-fA{|8Mq^_q%Qm*?2nToX?OadZ7Wet0n^tc;0yZOpK`p6g z2?k7YwLByl*4?H9W~HefFB*0Z1-2)r*Qz^!GZg-dB|`(N4#&YdbO-Ezg9q57X4zvL z--Z#!<3nPsNu{^Hx8g-q|S z>EB@S4CdoG#hSi1fmr4bCW9Vw8sqmDb8H7nS=B%$ec|y?1RgE0BMKm*>dG}dEhKve zCbk6Gz$)13C>4wrD}?o~?{y&5$90nsIS?iL=Vo@5`MJzqrLGq%mMB1&6nL$y)-| zS1w+`@7dX(W#+bK|M}Wyb8PO}+~>1DyXIW`?Q8!&_xIQS>e}!9=2!yKH%$>p5l9h8 z5l9h85l9h85l9h85l9jEzlcC~dUvXBR`s%35H(&ds&$i>%%UoarMg-+VFW6fTrFE% zD`~UTxKyoFw5q0;i>7L6HF9aHhEXUB!>HFZOBLl>oofa4HEOK$5^P{)y&%kDofoZ2 z8J^FIt{Ph1ELTOXYMG)?Xb4p`VCOEF7+l#fYW13W zMUL6R{NvyIBG>d8YCNf@_aZf( z)PZ(^8c%BYKQDWp&;~h8jVHA;oO^qE_wuB6f>{vv^z?9AtIDX*itsVbK{=gQ8=y!~};)WeL@!HWl93v*h70Z!@I^kAdqSLTP z+X!ocb1K9k+^F!{xlOWCx6up25VI_Rxm~+f|G@R!58@c z6kHMqwg=m|yh$8&;p#zH0KAXnUPqU_O%C|8Jcgm~nO%dP0Rwc;wK_USJ%W=?ilI4* zT@HX`#II0+CLQl@EY;vL8geVVlEd+Ar$TmdqfL&O)6p-txWgHO9QJKFFE?xlXnnoK zUD1}l14O<2T1b{0kmLN1+x8LM1wEMW^013&mp+|GH^6I*$%tK)@FYryl3FhP;@dw_ zD@C|Hj_rdid$bRtaRpm?Z2KYR9Dam^ui*LaN%$mhT!Qp@d;aA0%#Wr^6E1m1r4L10 zDFH&UgwldDK?$TYArU@6PBe<%2?7PAjR7km!X@AdIVE&ny`zMzk)3SQXxNZzqwg%1 zE2{4?5q!{&!$}qRFfjiPws^+v}ZL*LZe!zLBohPg!sK!f@9dI^+ zo@5lxl6;k@buum>W;}QUNz9<5QJ-hxRtTA1NC!E+qgak!1lv-Njg}GHW;k8)m$Nd9 z0_d0wn?sOKlOliM3immQ86QF3O?WgxogTssq{lnxczzhrKt=??BK(W{tmipIU`(}K zFG5Cz=&4w!mZ}3+Tb7knhz&$MMDH{%SfO0YL9E2@j~JjAx+MG2KFR307YdKlvZH}m zJDcqwK&{R3<~O_kK1AkU{t0i{Zuc)fM@-#ux5K_+J8k|<3KNZdyTl={Mw4gBkewDd zUO=|LoZm5)B$}p{Axbn&E5n(}{Xp0b`B-m)6%52ZOzw^Rv^)bL^4|Q(dghNWPr4Nv z5h6qfqk@AZ1tQmU0Z*@E_tz?j4D6{Qta(hu4g-b4)F@&@!NQ{FZ5= z(Is_7vOgifd(_pNv?1z>*J&|z#mvDH%rRzZvOyE!%18xF)opxx0+9fNhy`ejRTKLP zifh2bhr^!eUIc7FK^Rz#P;5h~TvbYy8pgkkZw$Ci(i_|O%b_6zq8OzA|FwV1%>C=! zpUpj)yLj#Iu36XSXa9WmliAYTKg@mwm(rgUffRuhffRuhffRuhffRuhffRuhf&Z5X zyg7YmDmHuI%j<`pZwC1f@O8$f0`~}aV6K?`>U3kYO{?qU`?*KB{@VTXCvWx}^mci{ z;EP8I0}0F`L)-Y+D4~!8$ix?fgBCixs!Z>V_SY6X=+c%g*#%l(**$;q&S>*rhpz~| zU*0)?^7feCU)?B-PA@s$oP1~c->X}@}e?$A?_!)i0udd>SFFZPb zqKpor_q~Myf%FZ*6MeVu{POgZvpXfLLi}~4>90%=9v^?-;N0&_E0<&1kG~f{{(mI> zOMg-XQUp>2QUp>2QUp>2QUp>2QUp>2QUp>2QUt!l2$26j-T!}yCpdkz6oC|h6oC|h z6oC|h6oC|h6oC|h6oC|h6agTR`u|fhND)X8ND)X8ND)X8ND)X8ND)X8ND)X8ND=t* zBarU@zx;EYzF~?$ia?4$ia?4$ia?4$ia?4$ia?4$ia?40?f)-Moy*L9KDTn^mos;! ze~u5oQ9qwNxOi#Tp5M-Ve|gfX5OETPe(sOwW|wH26SNy-F z1~B!hf*nE#xYNS}EVIqX2p{K+bZJLsiUTQLEQ- z2P!%klX&!&jclU6(L!Bihb{F>bRyS!c%60KC~L7W^YOuTh7`hq=jLT1{ zNh59{T?&%!1PVu4@|>nlmP|Z|D$!F_`n())KQ(e(I9~BAnME0el-{5gib zkQzU)a!6y!S0~cf-9xQ77rm^4%z*#kCewUhc8w4eN|e@v3MG(!~><1#xx>>G)?Bl z?Z(~B`$(nxy*JK->6H1Ch0G7%nY0Yh2-AJR96<@r`yxFJ*e_N>n@Ew>MfrnR5`h*e z6|v8C+hE(CVM7OOp@s%$ORGp*%%2G;2cpGT^NeRgN`wtYI~2OCaE^K@Ee|!1kMmE| zs)8KSwL}jI-38UfoiO(y(p1a)zSU|+RqO|8xbmyFW8!I0_I}%fo}$9xO50r)F@$kH>Bj+sQ=Ns)NoKLdOX8zxQ2azN+RJgo-@K! zMeRA+v1{tEMv@p44llt}t4?nUUYrwqD?%>IDEajo_YaYkj0$@97^!IX((^ zsanl&BJ53wxvng&6Cl@qCs)>#as@p4>8}! zNvtDJ7dudMg#=}f@&*W;SVI=Izz8f!`1dj&91`tA9- z=bNYl($!_9oe*-L1IJn+PxC6rHl8ikk2;QR*rAJ}>>vzqK~zf};;_H)lLXU~I+3Ds zL-dBlF-qzLQUUT{Ulxh*Q6?S=4Ko^mBZF9~Myy5%-F=CC}eLGI zp9$A9yPZ@1*@7` z!!JNy=S=qkjkbS#@%Z-$;k=6KXecX9j6P<&euFBdLB=#eVt&^^5l2BR zO)XK}DlP-s$A&8Oh0EB_Vh;o^=$~gxJCxxXB|3+$MLX-qp;%SjqOqZ zGcWCdLFr4_OfN%AbU>zAh~)tG<}7P<+pt>6%{`sOX3&Op11MFY0|yo?3?1K`Gv-ekO{faa72p`j}GY!HPuX z)uQ&O^cHkGR4S9CCY{3&$y`O1H*sezF1(4?0%|CD7gyk<%A0wpIG0Q!FpmvtaP|wg zc|NLgx_Ml;v0w>WHe^OzxD%@$stk-K=(mR-cDmRY+X3vUWHjto^F%v5UfM*X`o$%U zPDJAgx_UGusZ2-gEVl;8V>eCZ1W>FG<>UayklzfFa9~Op5lxH5dbV6CV?rV+0WOy2 zA54{g%&OVCs>P=~AEq1^Yo}9mmzChF*k6`kHgeKWcY{ONkO)LUJ>J66DvrL!4)Feuxxrmewp=0`o%B4w zK}ZUUR29}#!k1=1?%Q04Is{{JMyyW^@Q?>!k>rFChqTEZL`)9G5gjb3xlhiV6%crm cKX``>b&{xho*mwerYy{@fh?O@1urr&w<|Jl_7h*o%<00!9;++J&mcH?wZ6vWYrpM(>Jyz z(w)3OYnXUmF!0#`2}nS4ZWb~4$h2|7V@~F#K#t817Y8wNIkI!aIt%JDw1#fBUFyp? zdD5~R35eS*82F#^SMj^^-Qug^zrYv6XR%o@K!I=a2OniM4tZv0Mp#H>r&gBd7o`;I zXOtF|ILBzt-uDtdlSM8L_g2vNY;W-rz4ad8W9z z9 { const urlPath = params.slug ? params.slug.join('/') : '' @@ -79,6 +80,9 @@ export default function DRDPage({ mdxSource }) { ) return ( <> + + {meta.title} +

diff --git a/examples/alan-turing-portal/pages/index.jsx b/examples/alan-turing-portal/pages/index.jsx index 195ca655..3ee70c68 100644 --- a/examples/alan-turing-portal/pages/index.jsx +++ b/examples/alan-turing-portal/pages/index.jsx @@ -4,7 +4,6 @@ import fs from 'fs' import { Card } from '../components/Card' import { Container } from '../components/Container' import clientPromise from '../lib/mddb' -import ReactMarkdown from 'react-markdown' import { Index } from 'flexsearch' import { useForm } from 'react-hook-form' import Link from 'next/link' @@ -109,7 +108,6 @@ export default function Home({ datasets, indexText, listsOfKeywords, - contributingText, availableLanguages, availablePlatforms, }) { @@ -141,7 +139,7 @@ export default function Home({

{indexText.frontmatter.title}

-
+
@@ -236,14 +234,6 @@ export default function Home({ ))} - -

- How to contribute -

-
- -
-
) } @@ -270,12 +260,7 @@ export async function getStaticProps() { })) const index = await mddb.getFileByUrl('/') - const contributing = await mddb.getFileByUrl('contributing') let indexSource = fs.readFileSync(index.file_path, { encoding: 'utf-8' }) - let contributingSource = fs.readFileSync(contributing.file_path, { - encoding: 'utf-8', - }) - contributingSource = await serialize(contributingSource, { parseFrontmatter: true }) indexSource = await serialize(indexSource, { parseFrontmatter: true }) const availableLanguages = [ @@ -289,7 +274,6 @@ export async function getStaticProps() { datasets, listsOfKeywords, indexText: indexSource, - contributingText: contributingSource, availableLanguages, availablePlatforms, }, diff --git a/examples/alan-turing-portal/styles/tailwind.css b/examples/alan-turing-portal/styles/tailwind.css index f5159d35..26f73ecb 100644 --- a/examples/alan-turing-portal/styles/tailwind.css +++ b/examples/alan-turing-portal/styles/tailwind.css @@ -3,6 +3,11 @@ @import './prism.css'; @import 'tailwindcss/utilities'; -.contributing li { - margin-bottom: 1.75rem; +.index-text ul, +.index-text p { + margin: 0; +} + +.index-text h2 { + margin-top: 1rem; }