commit
70f3f86345
@ -1,60 +0,0 @@
|
||||
This example renders markdown + CSV into an elegant web page. These type of data setup we term [data literate][]
|
||||
|
||||
[data literate]: https://portaljs.org/data-literate
|
||||
|
||||
## How to use
|
||||
|
||||
```bash
|
||||
npx create-next-app -e https://github.com/datopian/portal.js/tree/main/examples/data-literate
|
||||
# choose a name for your portal when prompted e.g. your-portal or go with default my-app
|
||||
|
||||
# then run it
|
||||
cd your-portal
|
||||
yarn #install packages
|
||||
yarn dev # start app in dev mode
|
||||
```
|
||||
|
||||
You should see the demo portal running with the example dataset provided in `http://localhost:3000/demo`
|
||||
|
||||
For the moment there is no root path and each markdown file will have it's own path (route) for the generated html code.
|
||||
|
||||
TODO
|
||||
### Use your own dataset
|
||||
|
||||
You can try it out with your own data literate setups:
|
||||
|
||||
In the directory of your portal do:
|
||||
|
||||
```bash
|
||||
export PORTAL_DATASET_PATH=/path/to/my/dataset
|
||||
```
|
||||
|
||||
Then restart the dev server:
|
||||
|
||||
```
|
||||
yarn dev
|
||||
```
|
||||
|
||||
Check the portal page and it should have updated e.g. like:
|
||||
|
||||
TODO
|
||||
|
||||
### Static Export
|
||||
|
||||
Build the export:
|
||||
|
||||
```
|
||||
yarn build
|
||||
```
|
||||
|
||||
Results will be in `out/` subfolder.
|
||||
|
||||
To test you will need to run a local webserver in the folder (just opening the relevant file in your browser won't work):
|
||||
|
||||
Here we do this with another (non nodejs based) server to show that the static site works. Python3 as a really useful simple http server that one can use here:
|
||||
|
||||
```
|
||||
cd out
|
||||
python3 -m http.server
|
||||
```
|
||||
|
||||
@ -1,41 +0,0 @@
|
||||
import Layout from './Layout'
|
||||
import Head from 'next/head'
|
||||
import Excel from './Excel'
|
||||
import Table from './Table'
|
||||
import TableGrid from './TableGrid'
|
||||
import LineChart from './LineChart'
|
||||
import MetaData from './Metadata'
|
||||
import { MDXProvider } from '@mdx-js/react'
|
||||
import { Vega, VegaLite } from 'react-vega'
|
||||
|
||||
// Custom components/renderers to pass to MDX.
|
||||
// Since the MDX files aren't loaded by webpack, they have no knowledge of how
|
||||
// to handle import statements. Instead, you must include components in scope
|
||||
// here.
|
||||
const components = {
|
||||
Table,
|
||||
Excel,
|
||||
Vega,
|
||||
VegaLite,
|
||||
LineChart,
|
||||
Head,
|
||||
TableGrid,
|
||||
MetaData,
|
||||
}
|
||||
|
||||
|
||||
export default function DataLiterate({ children }) {
|
||||
const { Component, pageProps } = children
|
||||
|
||||
return (
|
||||
<Layout>
|
||||
<main>
|
||||
<MDXProvider components={components}>
|
||||
<div className="prose mx-auto">
|
||||
<Component {...pageProps} />
|
||||
</div>
|
||||
</MDXProvider>
|
||||
</main>
|
||||
</Layout>
|
||||
)
|
||||
}
|
||||
@ -1,74 +0,0 @@
|
||||
import axios from 'axios'
|
||||
import XLSX from 'xlsx'
|
||||
import React, { useEffect, useState } from 'react'
|
||||
|
||||
import Table from './Table'
|
||||
|
||||
export default function Excel ({ src='' }) {
|
||||
const [data, setData] = React.useState([])
|
||||
const [cols, setCols] = React.useState([])
|
||||
const [workbook, setWorkbook] = React.useState(null)
|
||||
const [error, setError] = React.useState('')
|
||||
const [hasMounted, setHasMounted] = React.useState(0)
|
||||
|
||||
// so this is here so we re-render this in the browser
|
||||
// and not just when we build the page statically in nextjs
|
||||
useEffect(() => {
|
||||
if (hasMounted==0) {
|
||||
handleUrl(src)
|
||||
}
|
||||
setHasMounted(1)
|
||||
})
|
||||
|
||||
function handleUrl(url) {
|
||||
// if url is external may have CORS issue so we proxy it ...
|
||||
if (url.startsWith('http')) {
|
||||
const PROXY_URL = window.location.origin + '/api/proxy'
|
||||
url = PROXY_URL + '?url=' + encodeURIComponent(url)
|
||||
}
|
||||
axios.get(url, {
|
||||
responseType: 'arraybuffer'
|
||||
}).then((res) => {
|
||||
let out = new Uint8Array(res.data)
|
||||
let workbook = XLSX.read(out, {type: "array"})
|
||||
// Get first worksheet
|
||||
const wsname = workbook.SheetNames[0]
|
||||
const ws = workbook.Sheets[wsname]
|
||||
// Convert array of arrays
|
||||
const datatmp = XLSX.utils.sheet_to_json(ws, {header:1})
|
||||
const colstmp = make_cols(ws['!ref'])
|
||||
setData(datatmp)
|
||||
setCols(colstmp)
|
||||
setWorkbook(workbook)
|
||||
}).catch((e) => {
|
||||
setError(e.message)
|
||||
})
|
||||
}
|
||||
|
||||
return (
|
||||
<>
|
||||
{error &&
|
||||
<div>
|
||||
There was an error loading the excel file at {src}:
|
||||
<p>{error}</p>
|
||||
</div>
|
||||
}
|
||||
{workbook &&
|
||||
<ul>
|
||||
{workbook.SheetNames.map((value, index) => {
|
||||
return <li key={index}>{value}</li>
|
||||
})}
|
||||
</ul>
|
||||
}
|
||||
<Table data={data} cols={cols} />
|
||||
</>
|
||||
)
|
||||
}
|
||||
|
||||
/* generate an array of column objects */
|
||||
const make_cols = refstr => {
|
||||
let o = [], C = XLSX.utils.decode_range(refstr).e.c + 1
|
||||
for(var i = 0; i < C; ++i) o[i] = {name:XLSX.utils.encode_col(i), key:i}
|
||||
return o
|
||||
}
|
||||
|
||||
@ -1,29 +0,0 @@
|
||||
import Link from 'next/link'
|
||||
import Head from 'next/head'
|
||||
|
||||
export default function Layout({ children, title = 'Home' }) {
|
||||
return (
|
||||
<>
|
||||
<Head>
|
||||
<title>Portal.JS - {title}</title>
|
||||
<link rel="icon" href="/favicon.ico" />
|
||||
<meta charSet="utf-8" />
|
||||
<meta name="viewport" content="initial-scale=1.0, width=device-width" />
|
||||
</Head>
|
||||
<div className="mx-auto p-6">
|
||||
{children}
|
||||
</div>
|
||||
<footer className="flex items-center justify-center w-full h-24 border-t">
|
||||
<a
|
||||
className="flex items-center justify-center"
|
||||
href="https://datopian.com/"
|
||||
target="_blank"
|
||||
rel="noopener noreferrer"
|
||||
>
|
||||
Built by{' '}
|
||||
<img src="/datopian-logo.png" alt="Datopian Logo" className="h-6 ml-2" />
|
||||
</a>
|
||||
</footer>
|
||||
</>
|
||||
)
|
||||
}
|
||||
@ -1,33 +0,0 @@
|
||||
import { Vega, VegaLite } from 'react-vega'
|
||||
|
||||
export default function LineChart( { data=[] }) {
|
||||
var tmp = data
|
||||
if (Array.isArray(data)) {
|
||||
tmp = data.map((r,i) => {
|
||||
return { x: r[0], y: r[1] }
|
||||
})
|
||||
}
|
||||
const vegaData = { "table": tmp }
|
||||
const spec = {
|
||||
"$schema": "https://vega.github.io/schema/vega-lite/v5.json",
|
||||
"mark": "line",
|
||||
"data": {
|
||||
"name": "table"
|
||||
},
|
||||
"encoding": {
|
||||
"x": {
|
||||
"field": "x",
|
||||
"timeUnit": "year",
|
||||
"type": "temporal"
|
||||
},
|
||||
"y": {
|
||||
"field": "y",
|
||||
"type": "quantitative"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return (
|
||||
<VegaLite data={ vegaData } spec={ spec } />
|
||||
)
|
||||
}
|
||||
@ -1,18 +0,0 @@
|
||||
|
||||
|
||||
export default function MetaData({ title, author, description }) {
|
||||
return (
|
||||
<header>
|
||||
<div className="mb-6">
|
||||
<h1>{title}</h1>
|
||||
{author && (
|
||||
<div className="-mt-6"><p className="opacity-60 pl-1">{author}</p></div>
|
||||
)}
|
||||
{description && (
|
||||
<p className="description">{description}</p>
|
||||
)}
|
||||
</div>
|
||||
</header>
|
||||
)
|
||||
|
||||
}
|
||||
@ -1,83 +0,0 @@
|
||||
import axios from 'axios'
|
||||
import React, { useEffect, useState } from 'react'
|
||||
|
||||
const papa = require("papaparse")
|
||||
|
||||
/*
|
||||
Simple HTML Table
|
||||
usage: <OutTable data={data} cols={cols} />
|
||||
data:Array<Array<any> >;
|
||||
cols:Array<{name:string, key:number|string}>;
|
||||
*/
|
||||
export default function Table({ data=[], cols=[], csv='', url='' }) {
|
||||
if (csv) {
|
||||
const out = parseCsv(csv)
|
||||
data = out.rows
|
||||
cols = out.cols
|
||||
}
|
||||
|
||||
const [ourdata, setData] = React.useState(data)
|
||||
const [ourcols, setCols] = React.useState(cols)
|
||||
const [error, setError] = React.useState('')
|
||||
|
||||
useEffect(() => {
|
||||
if (url) {
|
||||
loadUrl(url)
|
||||
}
|
||||
}, [url])
|
||||
|
||||
function loadUrl(path) {
|
||||
// HACK: duplicate of Excel code - maybe refactor
|
||||
// if url is external may have CORS issue so we proxy it ...
|
||||
if (url.startsWith('http')) {
|
||||
const PROXY_URL = window.location.origin + '/api/proxy'
|
||||
url = PROXY_URL + '?url=' + encodeURIComponent(url)
|
||||
}
|
||||
axios.get(url).then((res) => {
|
||||
const { rows, fields } = parseCsv(res.data)
|
||||
setData(rows)
|
||||
setCols(fields)
|
||||
})
|
||||
}
|
||||
|
||||
return (
|
||||
<>
|
||||
<SimpleTable data={ourdata} cols={ourcols} />
|
||||
</>
|
||||
)
|
||||
}
|
||||
|
||||
/*
|
||||
Simple HTML Table
|
||||
usage: <OutTable data={data} cols={cols} />
|
||||
data:Array<Array<any> >;
|
||||
cols:Array<{name:string, key:number|string}>;
|
||||
*/
|
||||
function SimpleTable({ data=[], cols=[] }) {
|
||||
return (
|
||||
<div className="table-responsive">
|
||||
<table className="table table-striped">
|
||||
<thead>
|
||||
<tr>{cols.map((c) => <th key={c.key}>{c.name}</th>)}</tr>
|
||||
</thead>
|
||||
<tbody>
|
||||
{data.map((r,i) => <tr key={i}>
|
||||
{cols.map(c => <td key={c.key}>{ r[c.key] }</td>)}
|
||||
</tr>)}
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
)
|
||||
}
|
||||
|
||||
function parseCsv(csv) {
|
||||
csv = csv.trim()
|
||||
const rawdata = papa.parse(csv, {header: true})
|
||||
const cols = rawdata.meta.fields.map((r,i) => {
|
||||
return { key: r, name: r }
|
||||
})
|
||||
return {
|
||||
rows: rawdata.data,
|
||||
fields: cols
|
||||
}
|
||||
}
|
||||
@ -1,19 +0,0 @@
|
||||
const path = require('path')
|
||||
const fs = require('fs');
|
||||
|
||||
const srcPath = process.argv[2]
|
||||
|
||||
const destForMarkdown = './pages/'
|
||||
const destForData = './public/'
|
||||
|
||||
const readme = path.join(srcPath, 'README.md')
|
||||
const readmeDest = path.join(destForMarkdown, 'index.mdx')
|
||||
|
||||
fs.copyFileSync(readme, readmeDest)
|
||||
|
||||
const data = path.join(srcPath, 'data.csv')
|
||||
const dataDest = path.join(destForData, 'data.csv')
|
||||
|
||||
fs.copyFileSync(data, dataDest)
|
||||
|
||||
console.log('Files copied successfully!')
|
||||
@ -1,20 +0,0 @@
|
||||
import gfm from 'remark-gfm'
|
||||
import toc from 'remark-toc'
|
||||
import slug from 'remark-slug'
|
||||
import remarkFrontmatter from 'remark-frontmatter'
|
||||
import { remarkMdxFrontmatter } from 'remark-mdx-frontmatter'
|
||||
import withMDXImp from '@next/mdx'
|
||||
|
||||
const withMDX = withMDXImp({
|
||||
extension: /\.mdx?$/,
|
||||
options: {
|
||||
remarkPlugins: [remarkFrontmatter, remarkMdxFrontmatter, gfm, toc, slug],
|
||||
rehypePlugins: [],
|
||||
// If you use `MDXProvider`, uncomment the following line.
|
||||
providerImportSource: "@mdx-js/react",
|
||||
},
|
||||
})
|
||||
export default withMDX({
|
||||
// Append the default value with md extensions
|
||||
pageExtensions: ['ts', 'tsx', 'js', 'jsx', 'md', 'mdx'],
|
||||
})
|
||||
50978
examples/data-literate-template/package-lock.json
generated
50978
examples/data-literate-template/package-lock.json
generated
File diff suppressed because it is too large
Load Diff
@ -1,43 +0,0 @@
|
||||
{
|
||||
"name": "docs",
|
||||
"version": "0.1.0",
|
||||
"private": true,
|
||||
"scripts": {
|
||||
"dev": "next dev",
|
||||
"build": "next build",
|
||||
"export": "next export",
|
||||
"start": "next start"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">12"
|
||||
},
|
||||
"dependencies": {
|
||||
"@headlessui/react": "^1.3.0",
|
||||
"@heroicons/react": "^1.0.3",
|
||||
"@mdx-js/loader": "^2.0.0",
|
||||
"@mdx-js/react": "^2.0.0",
|
||||
"@next/mdx": "^12.1.0",
|
||||
"@tailwindcss/typography": "^0.5.2",
|
||||
"autoprefixer": "^10.4.2",
|
||||
"frictionless.js": "^0.13.4",
|
||||
"next": "12.1.0",
|
||||
"papaparse": "^5.3.1",
|
||||
"portal": "https://github.com/datopian/portal.js.git",
|
||||
"postcss": "^8.4.7",
|
||||
"prop-types": "^15.7.2",
|
||||
"react": "17.0.1",
|
||||
"react-dom": "17.0.1",
|
||||
"react-vega": "^7.4.4",
|
||||
"remark": "^13.0.0",
|
||||
"remark-footnotes": "^3.0.0",
|
||||
"remark-frontmatter": "^4.0.1",
|
||||
"remark-gfm": "^1.0.0",
|
||||
"remark-mdx-frontmatter": "^1.1.1",
|
||||
"remark-slug": "^6.1.0",
|
||||
"remark-toc": "^7.2.0",
|
||||
"tailwindcss": "^3.0.23",
|
||||
"vega": "^5.20.2",
|
||||
"vega-lite": "^5.1.0",
|
||||
"xlsx": "^0.17.0"
|
||||
}
|
||||
}
|
||||
@ -1,12 +0,0 @@
|
||||
import '../styles/globals.css'
|
||||
import '../styles/tailwind.css'
|
||||
import DataLiterate from '../components/DataLiterate'
|
||||
|
||||
|
||||
function MyApp({ Component, pageProps }) {
|
||||
return (
|
||||
<DataLiterate children={{ Component, pageProps }}/>
|
||||
)
|
||||
}
|
||||
|
||||
export default MyApp
|
||||
@ -1,26 +0,0 @@
|
||||
import axios from 'axios'
|
||||
|
||||
export default function handler(req, res) {
|
||||
if (!req.query.url) {
|
||||
res.status(200).send({
|
||||
error: true,
|
||||
info: 'No url to proxy in query string i.e. ?url=...'
|
||||
})
|
||||
return
|
||||
}
|
||||
axios({
|
||||
method: 'get',
|
||||
url: req.query.url,
|
||||
responseType:'stream'
|
||||
})
|
||||
.then(resp => {
|
||||
resp.data.pipe(res)
|
||||
})
|
||||
.catch(err => {
|
||||
res.status(400).send({
|
||||
error: true,
|
||||
info: err.message,
|
||||
detailed: err
|
||||
})
|
||||
})
|
||||
}
|
||||
@ -1,336 +0,0 @@
|
||||
---
|
||||
title: Demo
|
||||
author: Rufus Pollock
|
||||
description: This demos and documents Data Literate features live
|
||||
---
|
||||
|
||||
<MetaData title={title} author={author} description={description} />
|
||||
|
||||
|
||||
You can see the raw source of this page here: https://raw.githubusercontent.com/datopian/data-literate/main/content/demo.mdx
|
||||
|
||||
## Table of Contents
|
||||
|
||||
## GFM
|
||||
|
||||
We can have github-flavored markdown including markdown tables, auto-linked links and checklists:
|
||||
|
||||
```
|
||||
https://github.com/datopian/portal.js
|
||||
|
||||
| a | b |
|
||||
|---|---|
|
||||
| 1 | 2 |
|
||||
|
||||
* [x] one thing to do
|
||||
* [ ] a second thing to do
|
||||
```
|
||||
|
||||
https://github.com/datopian/portal.js
|
||||
|
||||
| a | b |
|
||||
|---|---|
|
||||
| 1 | 2 |
|
||||
|
||||
* [x] one thing to do
|
||||
* [ ] a second thing to do
|
||||
|
||||
## Footnotes
|
||||
|
||||
```
|
||||
here is a footnote reference[^1]
|
||||
|
||||
[^1]: a very interesting footnote.
|
||||
```
|
||||
|
||||
here is a footnote reference[^1]
|
||||
|
||||
[^1]: a very interesting footnote.
|
||||
|
||||
|
||||
## Frontmatter
|
||||
|
||||
Posts can have frontmatter like:
|
||||
|
||||
```
|
||||
---
|
||||
title: Hello World
|
||||
author: Rufus Pollock
|
||||
---
|
||||
```
|
||||
|
||||
The title and description are pulled from the MDX file and processed using `gray-matter`. Additionally, links are rendered using a custom component passed to `next-mdx-remote`.
|
||||
|
||||
## A Table of Contents
|
||||
|
||||
You can create a table of contents by having a markdown heading named `Table of Contents`. You can see an example at the start of this post.
|
||||
|
||||
|
||||
## A Table
|
||||
|
||||
You can create a simple table ...
|
||||
|
||||
```
|
||||
<Table cols={[
|
||||
{ key: 'id', name: 'ID' },
|
||||
{ key: 'firstName', name: 'First name' },
|
||||
{ key: 'lastName', name: 'Last name' },
|
||||
{ key: 'age', name: 'Age' }
|
||||
]} data={[
|
||||
{ id: 1, lastName: 'Snow', firstName: 'Jon', age: 35 },
|
||||
{ id: 2, lastName: 'Lannister', firstName: 'Cersei', age: 42 },
|
||||
{ id: 3, lastName: 'Lannister', firstName: 'Jaime', age: 45 },
|
||||
{ id: 4, lastName: 'Stark', firstName: 'Arya', age: 16 },
|
||||
{ id: 7, lastName: 'Clifford', firstName: 'Ferrara', age: 44 },
|
||||
{ id: 8, lastName: 'Frances', firstName: 'Rossini', age: 36 },
|
||||
{ id: 9, lastName: 'Roxie', firstName: 'Harvey', age: 65 },
|
||||
]}
|
||||
/>
|
||||
```
|
||||
|
||||
<Table cols={[
|
||||
{ key: 'id', name: 'ID' },
|
||||
{ key: 'firstName', name: 'First name' },
|
||||
{ key: 'lastName', name: 'Last name' },
|
||||
{ key: 'age', name: 'Age' }
|
||||
]} data={[
|
||||
{ id: 1, lastName: 'Snow', firstName: 'Jon', age: 35 },
|
||||
{ id: 2, lastName: 'Lannister', firstName: 'Cersei', age: 42 },
|
||||
{ id: 3, lastName: 'Lannister', firstName: 'Jaime', age: 45 },
|
||||
{ id: 4, lastName: 'Stark', firstName: 'Arya', age: 16 },
|
||||
{ id: 7, lastName: 'Clifford', firstName: 'Ferrara', age: 44 },
|
||||
{ id: 8, lastName: 'Frances', firstName: 'Rossini', age: 36 },
|
||||
{ id: 9, lastName: 'Roxie', firstName: 'Harvey', age: 65 },
|
||||
]}
|
||||
/>
|
||||
|
||||
### Table from Raw CSV
|
||||
|
||||
You can also pass raw CSV as the content ...
|
||||
|
||||
```
|
||||
<Table csv={`
|
||||
Year,Temp Anomaly
|
||||
1850,-0.418
|
||||
2020,0.923
|
||||
`} />
|
||||
```
|
||||
|
||||
<Table csv={`
|
||||
Year,Temp Anomaly,
|
||||
1850,-0.418
|
||||
2020,0.923
|
||||
`} />
|
||||
|
||||
### Table from a URL
|
||||
|
||||
<Table url='/_files/HadCRUT.5.0.1.0.analysis.summary_series.global.annual.csv' />
|
||||
|
||||
```
|
||||
<Table url='/_files/HadCRUT.5.0.1.0.analysis.summary_series.global.annual.csv' />
|
||||
```
|
||||
___
|
||||
|
||||
You can also create a Table Grid, with more advance features
|
||||
|
||||
```
|
||||
<TableGrid cols={[
|
||||
{ key: 'id', name: 'ID' },
|
||||
{ key: 'firstName', name: 'First name' },
|
||||
{ key: 'lastName', name: 'Last name' },
|
||||
{ key: 'age', name: 'Age' }
|
||||
]} data={[
|
||||
{ id: 1, lastName: 'Snow', firstName: 'Jon', age: 35 },
|
||||
{ id: 2, lastName: 'Lannister', firstName: 'Cersei', age: 42 },
|
||||
{ id: 3, lastName: 'Lannister', firstName: 'Jaime', age: 45 },
|
||||
{ id: 4, lastName: 'Stark', firstName: 'Arya', age: 16 },
|
||||
{ id: 7, lastName: 'Clifford', firstName: 'Ferrara', age: 44 },
|
||||
{ id: 8, lastName: 'Frances', firstName: 'Rossini', age: 36 },
|
||||
{ id: 9, lastName: 'Roxie', firstName: 'Harvey', age: 65 },
|
||||
]}
|
||||
/>
|
||||
```
|
||||
|
||||
<TableGrid cols={[
|
||||
{ key: 'id', name: 'ID' },
|
||||
{ key: 'firstName', name: 'First name' },
|
||||
{ key: 'lastName', name: 'Last name' },
|
||||
{ key: 'age', name: 'Age' }
|
||||
]} data={[
|
||||
{ id: 1, lastName: 'Snow', firstName: 'Jon', age: 35 },
|
||||
{ id: 2, lastName: 'Lannister', firstName: 'Cersei', age: 42 },
|
||||
{ id: 3, lastName: 'Lannister', firstName: 'Jaime', age: 45 },
|
||||
{ id: 4, lastName: 'Stark', firstName: 'Arya', age: 16 },
|
||||
{ id: 7, lastName: 'Clifford', firstName: 'Ferrara', age: 44 },
|
||||
{ id: 8, lastName: 'Frances', firstName: 'Rossini', age: 36 },
|
||||
{ id: 9, lastName: 'Roxie', firstName: 'Harvey', age: 65 },
|
||||
]}
|
||||
/>
|
||||
|
||||
### Table Grid from Raw CSV
|
||||
|
||||
You can also pass raw CSV as the content ...
|
||||
|
||||
```
|
||||
<TableGrid csv={`
|
||||
Year,Temp Anomaly
|
||||
1850,-0.418
|
||||
2020,0.923
|
||||
`} />
|
||||
```
|
||||
|
||||
<TableGrid csv={`
|
||||
Year,Temp Anomaly,
|
||||
1850,-0.418
|
||||
2020,0.923
|
||||
`} />
|
||||
|
||||
### Table Grid from a URL
|
||||
|
||||
```
|
||||
<TableGrid url='/_files/HadCRUT.5.0.1.0.analysis.summary_series.global.annual.csv' />
|
||||
```
|
||||
|
||||
<TableGrid url='/_files/HadCRUT.5.0.1.0.analysis.summary_series.global.annual.csv' />
|
||||
|
||||
|
||||
|
||||
## Charts
|
||||
|
||||
You can create charts using a simple syntax.
|
||||
|
||||
### Line Chart
|
||||
|
||||
<LineChart data={
|
||||
[
|
||||
["1850",-0.41765878],
|
||||
["1851",-0.2333498],
|
||||
["1852",-0.22939907],
|
||||
["1853",-0.27035445],
|
||||
["1854",-0.29163003]
|
||||
]
|
||||
}
|
||||
/>
|
||||
|
||||
```
|
||||
<LineChart data={
|
||||
[
|
||||
["1850",-0.41765878],
|
||||
["1851",-0.2333498],
|
||||
["1852",-0.22939907],
|
||||
["1853",-0.27035445],
|
||||
["1854",-0.29163003]
|
||||
]
|
||||
}
|
||||
/>
|
||||
```
|
||||
|
||||
NB: we have quoted years as otherwise not interpreted as dates but as integers ...
|
||||
|
||||
|
||||
### Vega and Vega Lite
|
||||
|
||||
You can using vega or vega-lite. Here's an example using vega-lite:
|
||||
|
||||
<VegaLite data={ { "table": [
|
||||
{
|
||||
"y": -0.418,
|
||||
"x": 1850
|
||||
},
|
||||
{
|
||||
"y": 0.923,
|
||||
"x": 2020
|
||||
}
|
||||
]
|
||||
}
|
||||
} spec={
|
||||
{
|
||||
"$schema": "https://vega.github.io/schema/vega-lite/v4.json",
|
||||
"mark": "bar",
|
||||
"data": {
|
||||
"name": "table"
|
||||
},
|
||||
"encoding": {
|
||||
"x": {
|
||||
"field": "x",
|
||||
"type": "ordinal"
|
||||
},
|
||||
"y": {
|
||||
"field": "y",
|
||||
"type": "quantitative"
|
||||
}
|
||||
}
|
||||
}
|
||||
} />
|
||||
|
||||
|
||||
```jsx
|
||||
<VegaLite data={ { "table": [
|
||||
{
|
||||
"y": -0.418,
|
||||
"x": 1850
|
||||
},
|
||||
{
|
||||
"y": 0.923,
|
||||
"x": 2020
|
||||
}
|
||||
]
|
||||
}
|
||||
} spec={
|
||||
{
|
||||
"$schema": "https://vega.github.io/schema/vega-lite/v4.json",
|
||||
"mark": "bar",
|
||||
"data": {
|
||||
"name": "table"
|
||||
},
|
||||
"encoding": {
|
||||
"x": {
|
||||
"field": "x",
|
||||
"type": "ordinal"
|
||||
},
|
||||
"y": {
|
||||
"field": "y",
|
||||
"type": "quantitative"
|
||||
}
|
||||
}
|
||||
}
|
||||
} />
|
||||
|
||||
```
|
||||
|
||||
#### Line Chart from URL with Tooltip
|
||||
|
||||
https://vega.github.io/vega-lite/examples/interactive_multi_line_pivot_tooltip.html
|
||||
|
||||
<VegaLite spec={
|
||||
{
|
||||
"$schema": "https://vega.github.io/schema/vega-lite/v5.json",
|
||||
"data": {"url": "/_files/HadCRUT.5.0.1.0.analysis.summary_series.global.annual.csv"},
|
||||
"width": 600,
|
||||
"height": 250,
|
||||
"mark": "line",
|
||||
"encoding": {
|
||||
"x": {"field": "Time", "type": "temporal"},
|
||||
"y": {"field": "Anomaly (deg C)", "type": "quantitative"},
|
||||
"tooltip": {"field": "Anomaly (deg C)", "type": "quantitative"}
|
||||
}
|
||||
}
|
||||
} />
|
||||
|
||||
## Display Excel Files
|
||||
|
||||
Local file ...
|
||||
|
||||
```
|
||||
<Excel src='/_files/eight-centuries-of-global-real-interest-rates-r-g-and-the-suprasecular-decline-1311-2018-data.xlsx' />
|
||||
```
|
||||
|
||||
<Excel src='/_files/eight-centuries-of-global-real-interest-rates-r-g-and-the-suprasecular-decline-1311-2018-data.xlsx' />
|
||||
|
||||
Remote files work too (even without CORS) thanks to proxying:
|
||||
|
||||
```
|
||||
<Excel src='https://github.com/datasets/awesome-data/files/6604635/eight-centuries-of-global-real-interest-rates-r-g-and-the-suprasecular-decline-1311-2018-data.xlsx' />
|
||||
```
|
||||
|
||||
<Excel src='https://github.com/datasets/awesome-data/files/6604635/eight-centuries-of-global-real-interest-rates-r-g-and-the-suprasecular-decline-1311-2018-data.xlsx' />
|
||||
@ -1,8 +0,0 @@
|
||||
// If you want to use other PostCSS plugins, see the following:
|
||||
// https://tailwindcss.com/docs/using-with-preprocessors
|
||||
module.exports = {
|
||||
plugins: {
|
||||
tailwindcss: {},
|
||||
autoprefixer: {},
|
||||
},
|
||||
}
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 33 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 15 KiB |
@ -1,16 +0,0 @@
|
||||
html,
|
||||
body {
|
||||
padding: 0;
|
||||
margin: 0;
|
||||
font-family: -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Oxygen,
|
||||
Ubuntu, Cantarell, Fira Sans, Droid Sans, Helvetica Neue, sans-serif;
|
||||
}
|
||||
|
||||
a {
|
||||
color: inherit;
|
||||
text-decoration: none;
|
||||
}
|
||||
|
||||
* {
|
||||
box-sizing: border-box;
|
||||
}
|
||||
@ -1,3 +0,0 @@
|
||||
@tailwind base;
|
||||
@tailwind components;
|
||||
@tailwind utilities;
|
||||
@ -1,29 +0,0 @@
|
||||
const defaultTheme = require("tailwindcss/defaultTheme");
|
||||
|
||||
module.exports = {
|
||||
// purge: ['./pages/**/*.{js,ts,jsx,tsx}', './components/**/*.{js,ts,jsx,tsx}'],
|
||||
content: [
|
||||
"./pages/**/*.js",
|
||||
"./pages/**/*.ts",
|
||||
"./pages/**/*.jsx",
|
||||
"./pages/**/*.tsx",
|
||||
"./components/**/*.js",
|
||||
"./components/**/*.ts",
|
||||
"./components/**/*.jsx",
|
||||
"./components/**/*.tsx"
|
||||
],
|
||||
darkMode: false, // or 'media' or 'class'
|
||||
theme: {
|
||||
container: {
|
||||
center: true,
|
||||
},
|
||||
extend: {
|
||||
fontFamily: {
|
||||
mono: ["Inconsolata", ...defaultTheme.fontFamily.mono]
|
||||
}
|
||||
},
|
||||
},
|
||||
plugins: [
|
||||
require('@tailwindcss/typography'),
|
||||
],
|
||||
}
|
||||
@ -1,10 +1,10 @@
|
||||
import Layout from '../components/Layout'
|
||||
|
||||
import { MDXRemote } from 'next-mdx-remote'
|
||||
import dynamic from 'next/dynamic'
|
||||
import Head from 'next/head'
|
||||
import Link from 'next/link'
|
||||
|
||||
import TableGrid from './TableGrid'
|
||||
import Table from '../components/Table'
|
||||
import Excel from '../components/Excel'
|
||||
import LineChart from '../components/LineChart'
|
||||
import { Vega, VegaLite } from 'react-vega'
|
||||
|
||||
// Custom components/renderers to pass to MDX.
|
||||
@ -12,12 +12,12 @@ import { Vega, VegaLite } from 'react-vega'
|
||||
// to handle import statements. Instead, you must include components in scope
|
||||
// here.
|
||||
const components = {
|
||||
Table: dynamic(() => import('../components/Table')),
|
||||
Excel: dynamic(() => import('../components/Excel')),
|
||||
// TODO: try and make these dynamic ...
|
||||
Vega: Vega,
|
||||
VegaLite: VegaLite,
|
||||
LineChart: dynamic(() => import('../components/LineChart')),
|
||||
Table,
|
||||
TableGrid,
|
||||
Excel,
|
||||
Vega,
|
||||
VegaLite,
|
||||
LineChart,
|
||||
Head,
|
||||
}
|
||||
|
||||
|
||||
@ -126,6 +126,69 @@ Year,Temp Anomaly,
|
||||
```
|
||||
<Table url='/_files/HadCRUT.5.0.1.0.analysis.summary_series.global.annual.csv' />
|
||||
```
|
||||
___
|
||||
|
||||
You can also create a Table Grid, with more advance features
|
||||
|
||||
```
|
||||
<TableGrid cols={[
|
||||
{ key: 'id', name: 'ID' },
|
||||
{ key: 'firstName', name: 'First name' },
|
||||
{ key: 'lastName', name: 'Last name' },
|
||||
{ key: 'age', name: 'Age' }
|
||||
]} data={[
|
||||
{ id: 1, lastName: 'Snow', firstName: 'Jon', age: 35 },
|
||||
{ id: 2, lastName: 'Lannister', firstName: 'Cersei', age: 42 },
|
||||
{ id: 3, lastName: 'Lannister', firstName: 'Jaime', age: 45 },
|
||||
{ id: 4, lastName: 'Stark', firstName: 'Arya', age: 16 },
|
||||
{ id: 7, lastName: 'Clifford', firstName: 'Ferrara', age: 44 },
|
||||
{ id: 8, lastName: 'Frances', firstName: 'Rossini', age: 36 },
|
||||
{ id: 9, lastName: 'Roxie', firstName: 'Harvey', age: 65 },
|
||||
]}
|
||||
/>
|
||||
```
|
||||
|
||||
<TableGrid cols={[
|
||||
{ key: 'id', name: 'ID' },
|
||||
{ key: 'firstName', name: 'First name' },
|
||||
{ key: 'lastName', name: 'Last name' },
|
||||
{ key: 'age', name: 'Age' }
|
||||
]} data={[
|
||||
{ id: 1, lastName: 'Snow', firstName: 'Jon', age: 35 },
|
||||
{ id: 2, lastName: 'Lannister', firstName: 'Cersei', age: 42 },
|
||||
{ id: 3, lastName: 'Lannister', firstName: 'Jaime', age: 45 },
|
||||
{ id: 4, lastName: 'Stark', firstName: 'Arya', age: 16 },
|
||||
{ id: 7, lastName: 'Clifford', firstName: 'Ferrara', age: 44 },
|
||||
{ id: 8, lastName: 'Frances', firstName: 'Rossini', age: 36 },
|
||||
{ id: 9, lastName: 'Roxie', firstName: 'Harvey', age: 65 },
|
||||
]}
|
||||
/>
|
||||
|
||||
### Table Grid from Raw CSV
|
||||
|
||||
You can also pass raw CSV as the content ...
|
||||
|
||||
```
|
||||
<TableGrid csv={`
|
||||
Year,Temp Anomaly
|
||||
1850,-0.418
|
||||
2020,0.923
|
||||
`} />
|
||||
```
|
||||
|
||||
<TableGrid csv={`
|
||||
Year,Temp Anomaly,
|
||||
1850,-0.418
|
||||
2020,0.923
|
||||
`} />
|
||||
|
||||
### Table Grid from a URL
|
||||
|
||||
```
|
||||
<TableGrid url='/_files/HadCRUT.5.0.1.0.analysis.summary_series.global.annual.csv' />
|
||||
```
|
||||
|
||||
<TableGrid url='/_files/HadCRUT.5.0.1.0.analysis.summary_series.global.annual.csv' />
|
||||
|
||||
## Charts
|
||||
|
||||
|
||||
42989
examples/data-literate/package-lock.json
generated
42989
examples/data-literate/package-lock.json
generated
File diff suppressed because it is too large
Load Diff
@ -19,6 +19,7 @@
|
||||
"next": "12.1.0",
|
||||
"next-mdx-remote": "^3.0.4",
|
||||
"papaparse": "^5.3.1",
|
||||
"portal": "https://github.com/datopian/portal.js.git",
|
||||
"postcss": "^8.2.10",
|
||||
"prop-types": "^15.7.2",
|
||||
"react": "17.0.2",
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user